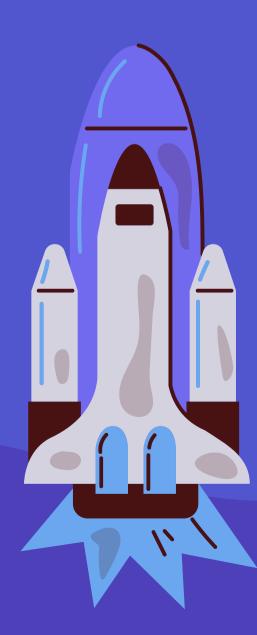
APRS Payload •

CHR PROM

Dragonfly satellite


CONTENTS

- - System diagram Safety compliance Bill of materials Schedule

 - Feasibility study Outreach effort
- Contact point information
- Question and Answer

Application form Explanation

PHASE 2 TIMELINE

5 May

31 May

PERIOD

- 15 March 31 May
- SUBMISSION DEADLINE

- **ANNOUNCEMENT OF 10 TEAMS**

PHÁSE 2 - POINT ALLOCATION +

System Block Diagram

Bill of material (BOM)

Feasibility study and functional test

Safety compliance

Quality of submission

Schedule

Outreach

20 points

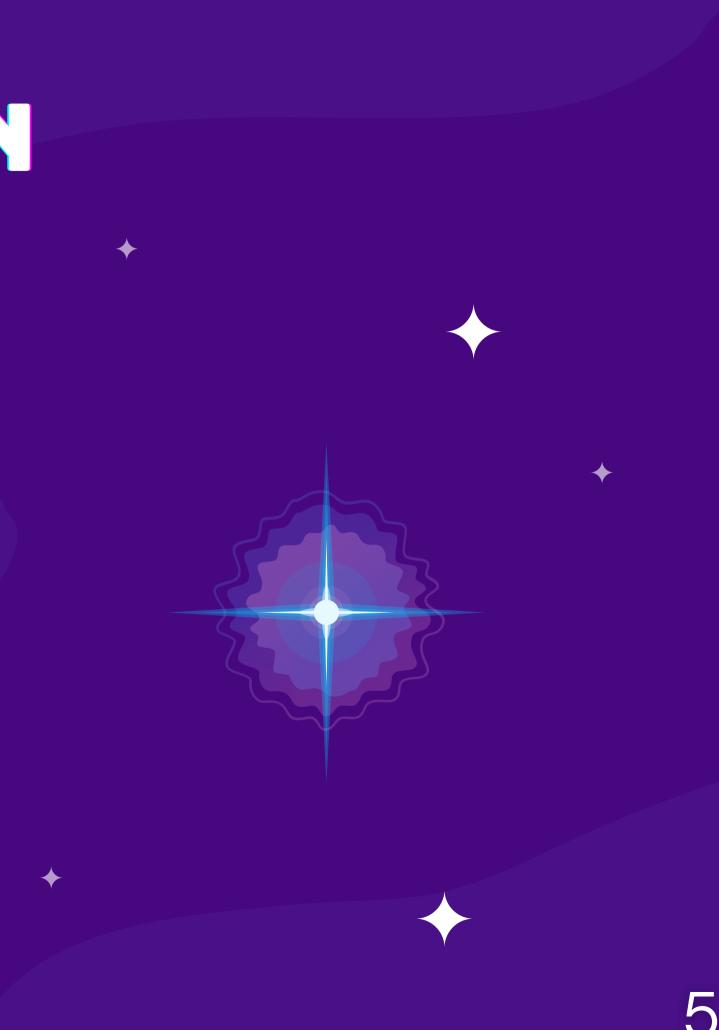
5 points

40 points

10 points

5 points

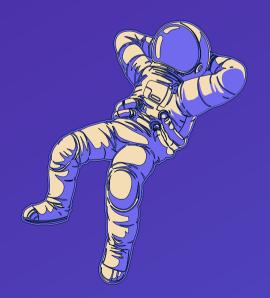
10 points

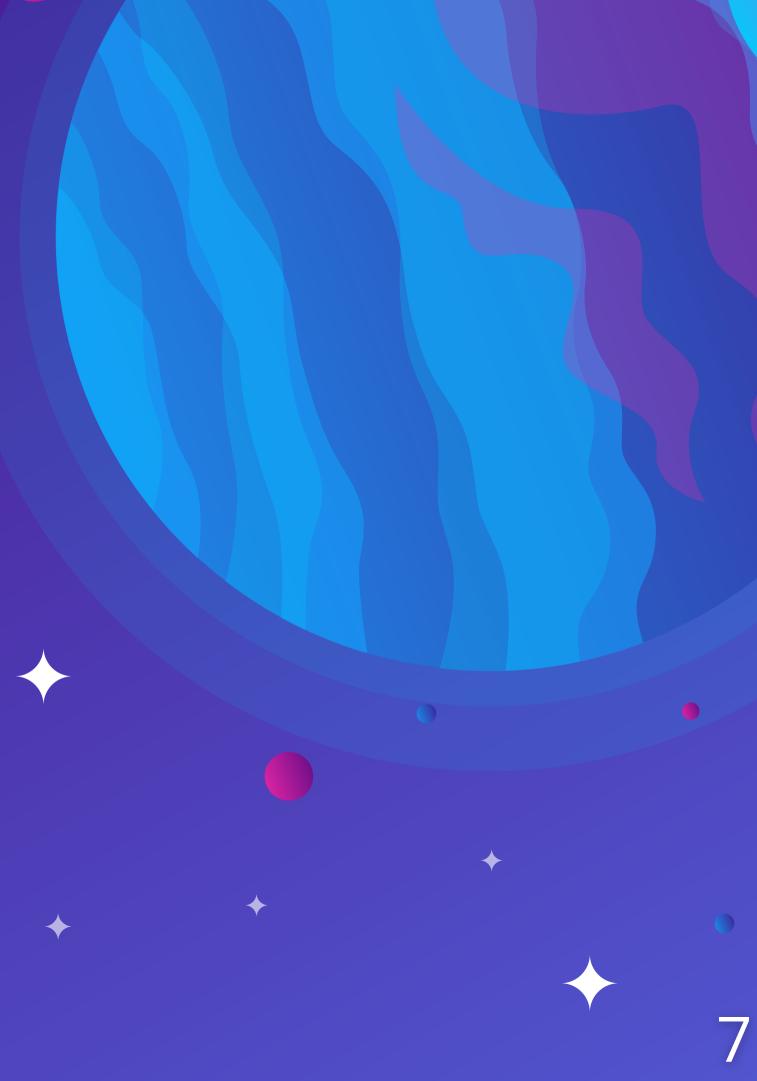

10 points

PHASE 2 APPLICATION

- Deliverables
 - Detailed description of your payload
 - Developed Bread Board Model (BBM)
 Functional test results
 - Outreaching efforts
 - Video presentation

PHASE 2 APPLICATION **SUBMISSION**


APPLICATION FORM


NO BBM

Within 15 slides Within 10 minutes Show your team members

PRESENTATION VIDEO

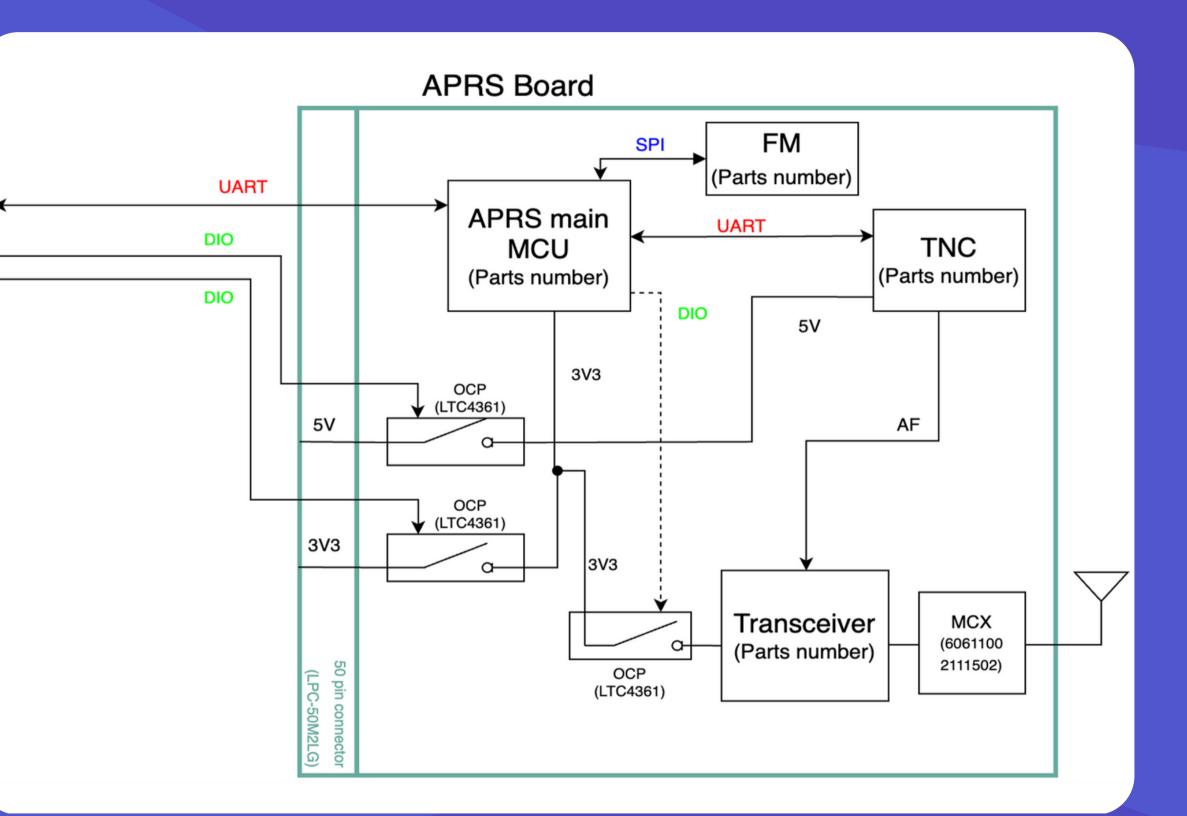
APPLICATION FORM

SYSTEM BLOCK DIAGRAM

PARAMETERS

SYSTEM BLOCK DIAGRAM

SCHEMATIC


Show the parts number, voltage, impedance,

communication protocol, power consumption, etc.

WRITE A DETAILED EXPLANATION

SYSTEM BLOCK DIAGRAM

 \blacklozenge

PIN ASSIGNMENT

50 pin assignment table
Detailed explanation for each pin
Conciseness

Signal name	Pin #		Signal name	
Programming/debug #2	2	1	Programming/debug #1	
	4	3	Programming/debug #3	
GND_SYS	14	13	GND_SYS	Pins No. 1
SUP_5VO	16	15	SUP_5VO	Pin No.1 is Pin No.2 i
UART (MCU Tx to Mission Boss)	18	17	UART (MCU Rx to Mission Boss)	Pin No.3 i
DI/O_2 (5VO OCP control)	20	19	DI/O_2 (3V3 OCP control)	Pin No. 17 the paylo
SUP_UNREG_1	24	23	SUP_UNREG_1	Boss PIC . Pin No.17
SUP_3V3_2	26	25	SUP_3V3_2	Pin No.18
SUP_UNREG_2	36	35	SUP_UNREG_2	Pin No. 19 current p
SUP_3V3_1	50	49	SUP_3V3_1	Pin No.19 Pin No.2C

PIN ASSIGNMENT

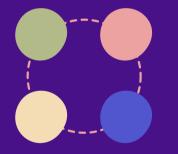
- -3 are used for programming.
- \diamond

- for Master clear
- s for PGC
- s for PGD

- 7–18 are used for UART communication between bad mission control unit (MCU) and the Mission
- is for Rx is for Tx
- **9-20 are used for DI/O line to control over protection (OCP) from Mission Boss PIC.** is for controlling the 3.3V line is for controlling the 5V line

BILL OF MÅTERIALS (BOM)

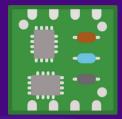
Cost in <u>USD</u> (for each component) Operating temperature Mention inventory


No.	Components	Manufacturer	Model number	Cost (USD)	Operating temperature
1	0.1 uF capacitor	Kemet	CO6O3C1O4K3RAC786 7	1.06	–55 to 125C°
2	MCU	Microchip	PIC18F67J94-I PT	62.93	–40 to 85C°
3	Flash Memory	Micron	MT250L01GBBB8ESF0 SIT	143.84	–40 to 85C°

No.1 we can get this component on 20 May 2023

FEASIBILITY STUDY

Power budget Time of operation



Concept of operation

Flow process Task definition Sequence

This part is the **most important** section of this phase

Mass and volume Mass & dimension 3D model

Power output Sensitivity

POWER BUDGET

The power budget requirements Operating current Operating voltage Operating power Power consumption for each mode

POWER BUDGET Example

Mode	Components		Operating current (mA)	Operating Voltage (V)	Operati Powe (mW)
Microcontroller		1.3	5	65	
Digipeating	OCP		O.1	5	0.5
	OCP		O.1	5	0.5
	OCP		O.1	5	0.5
	Flash memo	ry	16	3.3	52.8
	Transceiver -	Rx	32	5	160
		Тx	210	5	1050
TNC			0.4	5	2

Don't forget to add Store and Forward mode

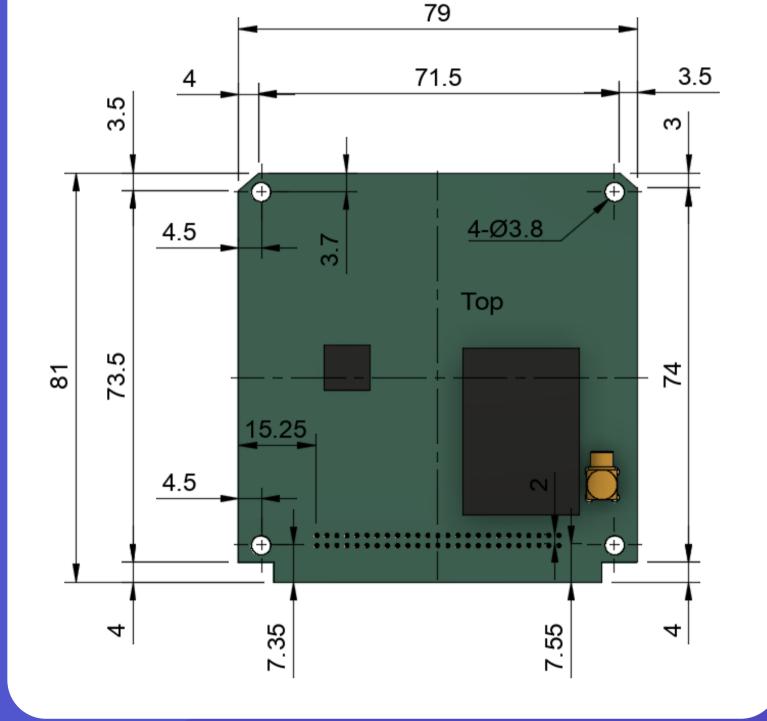
ing

Total power consumption of your board

Estimate here your total power consumption according to your design

POWER CONSUMPTION LIMITATION **OFTHE APRS BOARD**₊

APRS Power Consumption limitation


Mode	Max Power (mW
Rx	300
Тx	1750

V)

MASS AND VOLUME

+ Mass and dimension 3D model and/or picture Parts distribution Detailed explanation

Maximum thickness: 13.6 mm (including PCB)

Maximum mass: 90 g

CONCEPT OF OPERATION Flow process of each working mode Task definition by component

Sequence of the process

Digipeater mode

<u>Note</u>

The switch for the transceiver is usually turned on, and if the MCU receives a specific command from the Mission Boss, it will be turned off

Activation

- At first, the MCU of APRS and TNC will be turned on by Mission Boss.
- At the same time, the antenna will be connected to this board. (Mission Boss will switch the 6way RF switch)
- TNC will work for digipeating

Shut down

Mission Boss will turn off both OCP connected to power lines

PRELIMINARY LINK BUDGET

Test Power output * Sensitivity

LINK BUDGET (UPLINK)

			UPLINK PATH		
\rightarrow			Orbit Altitude	[km]	400
		\diamond	Elevation Angle	[degree]	10.0
PARAMETERS			Slant Range	[km]	1439.8
		APRS-Digipeater and	Ground Station Antenna Pointing Loss	[dB]	1.0
Objective		Store and Forward	Ground Station to Spacecraft Antenna Polarization Los	s [dB]	3.0
Engruonau		Mission	Path Loss	[dB]	138.9
Frequency [MHz]		145.825	Atmospheric Losses	[dB]	1.1
Emission Type		15K0F2D	Ionospheric Losses	[dB]	0.7
Modulation		AFSK	Rain Losses	[dB]	0.0
Data Rate	[bps]	1200	Isotropic Signal Level at Spacecraft	[dBw]	-113.2
Protocol AX.25		AX.25	SPACECRAFT (RX Power Sensitivity Method)		
GROUND STATION			Spacecraft Antenna Pointing Loss	[dB]	5.0
Ground Station Transmitter Power Output	[W]	50.0	Spacecraft Antenna Gain	[dBi]	2.2
	[dBw]	17.0	Spacecraft Total Transmission Line Losses	[dB]	2.3
Ground Station Total Transmission Line Losses	s [dB]	1.5	Signal Power at Spacecraft LNA Input	[dBw]	-118.4
Antenna Gain	[dBi]	16.0			
Ground Station EIRP [dBw]		31.5	Deguined Signal Device at Space anoft I NA Ingest	[dBmW]	-88.4
			Required Signal Power at Spacecraft LNA Input	[dBmW]	-105.0
			System Link Margin	[dB]	16.6

EXAMPLE

 \diamond

LINK BUDGET (DOWNLINK)

\diamond		+
PARAMETERS		
Objective		APRS-Digipeater and Store and Forward Mission
Frequency	[MHz}	145.825
Emission Type		15K0F2D
Modulation		AFSK
Data Rate	[bps]	1200
Protocol		AX.25
SPACECRAFT		
Spacecraft Transmitter Power Output	[W]	2.0
	[dBw]	3.0
Spacecraft Total Transmission Line Loss	2.3	
Spacecraft Antenna Gain	[dBi]	2.2
Spacecraft EIRP	[dBw]	2.8

Orbit Altitude Elevation Angle Slant Range Spacecraft Antenna Pointing Spacecraft-to-Ground Anten Path Loss **Atmospheric Losses Ionospheric Losses Rain Losses** Isotropic Signal Level at Gro GROUND **Ground Station Antenna Poir Ground Station Antenna Gai Ground Station Total Transm Ground Station Effective Noi** Signal Power at Ground Stat **Ground Station Receiver Bar Ground Station Receiver Noi** Signal-to-Noise Power Ratio **Required SNR for Ground Sta**

System Link Margin

EXAMPLE

DOWNLINK PATH		
	[km]	400
	[degree]	10.0
	[km]	1439.8
ing Loss	[dB]	5.0
enna Polarization Loss	[dB]	3.0
	[dB]	138.9
	[dB]	1.1
	[dB]	0.7
	[dB]	0.0
round Station	[dBw]	-145.9
ND STATION (SNR Method)		
ointing Loss	[dB]	1.0
ain	[dBi]	16.0
smission Line Losses	[dB]	1.5
loise Temperature	[K]	1000.0
tation LNA Input	[dBw]	-132.4
Bandwidth	[Hz]	15000.0
loise Power	[dBw]	-156.8
io (SNR) at Ground Station Receive	24.5	
Station receiver	[dB]	11.5
	[dB]	13.0
	լսԵյ	13.0

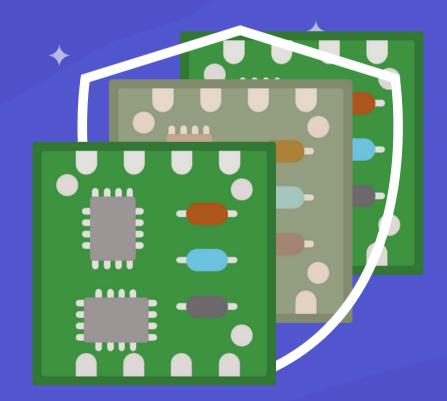
* SAFETY COMPLIANCE

Avoid interference (mechanical and electrical)

https://eprpartner.com/wp-content/uploads/2018/11/Blog-Marcel-S_example-of-RF-shielding-1.png

ICD

Check the ICD



ISOLATION SYSTEM

Describe the way to isolate your payload Mention situations when the isolation system could work

SCHEDULF

 Make schedule until the end of the competition Detailed schedule Mark finished, ongoing, and delayed tasks

 \blacklozenge

SCHEDULE

MARCH	APRIL	MAY	JUNE	JULY

TASKS

 \blacklozenge

Task1: completed
Task2: completed
Task3: delayed
Task4: on going
Task5: delayed
Task6
Task7
Task8

OUTREACH EFFORT

Show completed tasks and elaborate future plans

SOCIAL MEDIA

Instagram LinkedIn Facebook YouTube Twitter

ATTEND **CONFERENCES** Amateur radio

HOLD THE WORKSHOP Invite high school students

FUTURE PLAN

SOCIAL MEDIA

OBIRDSXKYUTECH + in BIRDS-X SATELLITE PROJECT BIRDSX_SATELLITE_PROJECT

CONTACT US

BIRDS-X.BIRDS-PROJECT.COM

BIRDS-X-PROJECT@KYUTECH-LASEINE.NET

send me emails

QUESTION **BANSHER**

